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ABSTRACT:	Engineering	design	 is	a	complex	process	both	 for	 students	 to	participate	 in	and	 for	
instructors	to	assess.	Informed	designers	use	the	key	strategy	of	conducting	experiments	as	they	
test	 ideas	 to	 inform	 next	 steps.	 Conversely,	 beginning	 designers	 experiment	 less,	 often	 with	
confounding	variables.	These	behaviours	are	not	easy	to	assess	 in	educational	settings	because	
they	occur	throughout	the	design	process.	This	paper	reports	on	a	two-fold	study	carried	out	to	
test	the	model	for	identifying	student	behaviours	during	design	experimentation.	The	first	phase	
uses	the	process	data	from	48	middle-school	students	designing	an	energy-plus	house.	The	study	
utilized	learner	interaction	data	sets	collected	through	automatic,	unobtrusive	logging	of	student	
actions	 in	 a	 CAD	 platform.	 The	 analysis	 of	 learner	 process	 data	 is	 compared	 to	 student	
performance	 on	 an	 open-ended	 post-test.	 The	 second	 phase	 correlates	 the	 number	 of	
experiments	 students	 conducted	 to	 the	quality	of	 student	prototypes.	The	 results	 suggest	 that	
the	 proposed	 model	 can	 be	 used	 to	 identify,	 characterize,	 and	 assess	 student	 strategies	
associated	with	 conducting	 experiments.	 Implications	 of	 this	work	 are	 relevant	 to	 engineering	
and	design	educators	as	well	as	researchers	interested	in	the	role	of	learning	analytics	in	studying	
complex	processes.	
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1 INTRODUCTION 

Learning	analytics	(LA)	 is	a	powerful	approach	to	assessing	complex	 learning	processes	 in	rich	 learning	
environments	 (Bienkowski,	 Feng,	&	Means,	 2012;	USDE,	 2016).	 The	use	of	 learning	 analytics	 to	 study	
complex	learning	processes	such	as	human	problem	solving	is	an	opportunity	to	advance	knowledge	in	
ways	 that	 were	 not	 possible	 before	 (e.g.,	Worsley	 &	 Blikstein,	 2014).	When	 compared	 to	 traditional	
methods	for	studying	and	assessing	student	learning,	technology-based	approaches	offer	advantages	by	
increasing	 personalization,	 accessibility,	 and	 efficiency	 (Pellegrino,	 2002;	 USDE,	 2016).	 As	 learners	
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engage	 with	 technology,	 they	 leave	 a	 trail	 of	 ways	 in	 which	 they	 use	 the	 technology	 (captured	 as	
interaction	 and	 process	 data),	 and	 the	 outcomes	 and	 the	 impact	 of	 using	 such	 technology	 (learning	
data).	By	integrating	computational	methods	with	learning	sciences,	learning	analytics	expand	research	
capabilities	in	understanding	the	complex	learning	processes	and	nuances	among	learners.	In	this	study,	
we	specifically	explore	engineering	design,	a	systematic	and	iterative	process	engineers	use	to	solve	ill-
defined,	ill-structured	problems.	

When	studying	the	student	learning	process,	the	open-ended	nature	of	design	is	exactly	what	makes	it	
difficult	 to	 assess.	 The	qualitative	 approaches	 that	 have	been	explored	 rely	 on	 video-recorded	design	
sessions,	 student	 written	 journals,	 or	 reports,	 but	 these	 approaches	 do	 not	 allow	 for	 capturing	 and	
characterizing	 students’	 own	 design	 processes	 on	 a	 large	 scale.	 This	 paper	 proposes	 a	 model	 to	
characterize	 and	 assess	 student	 strategies	 to	 conduct	 experiments	 as	 part	 of	 the	 engineering	 design	
process	using	learning	analytics	tools	and	techniques.	This	model,	Experimentation	Strategies	in	Design,	
is	 based	 on	 literature	 on	 student	 designers	 that	 suggests	 that	 novice	 designers	 perform	 fewer	
experiments	as	a	part	of	their	design	process	as	compared	to	 informed	designers	(Crismond	&	Adams,	
2012).	However,	as	student	designers	progress	in	their	practices,	they	perform	experiments	that	range	
from	confounding	experiments	to	systematic	controlled	experiments.	In	this	study,	we	hypothesize	and	
test	 the	Experimentation	 Strategies	 in	Design	model	 that	 characterizes	 the	 strategies	 students	 use	 to	
conduct	 experiments	 in	 a	 computer-aided	 design	 (CAD)	 environment	 as	 they	 design	 energy-plus	 or	
positive	energy	buildings.	The	CAD	platform	allows	automatic,	unobtrusive	 logging	of	 student	actions.	
The	first	phase	of	the	study	compares	the	clickstream	data	to	student	performance	on	an	open-ended	
post-test.	The	second	phase	correlates	the	number	of	experiments	to	the	quality	of	student	prototypes.	

2 LITERATURE REVIEW 

2.1 Engineering Design 

Engineering	 design	 is	 an	 inquiry	 that	 can	 result	 in	 a	 process,	 a	 virtual	 product,	 or	 a	 physical	 product.	
Therefore,	besides	the	direct	support	CAD	tools	provide	to	the	design	process,	these	tools	can	also	be	
used	 for	 other	purposes	 such	 as	 instruction	 and	 assessment	 (Xie,	 Zhang,	Nourian,	 Pallant,	&	Hazzard,	
2014).	Furthermore,	when	physical	experimentation	is	required,	some	of	these	tools	allow	the	designer	
to	complete	the	cycle	by	3-D	printing	the	objects	to	create	a	prototype.	

Competency	 in	 engineering	 design	 is	 not	 easy	 to	 assess.	 The	 complexity	 of	 the	 design	 process	 and	 a	
designer’s	 performance	 during	 this	 process	 can	 be	 effectively	 assessed	 neither	 solely	 through	 the	
performance	of	the	designed	product	nor	with	a	simple	paper-pencil	test.	The	open-ended	nature	of	the	
design	process	may	 lead	 to	different	possible	 solutions	by	different	 students.	Moreover,	 not	only	 the	
final	 solution	 is	 important,	but	also	 the	 steps	 students	go	 through	as	 they	approach	 the	problem	and	
identify	an	optimal	solution.	Several	qualitative	techniques	have	been	explored	as	alternatives	to	assess	
the	 design	 process	 (e.g.,	 Purzer,	 Goldstein,	 Adams,	 Xie,	 &	Nourian,	 2015;	Worsley	&	 Blikstein,	 2014).	
Worsley	and	Blikstein	performed	a	combined	human–computer	analysis	of	students	as	they	completed	a	



	
(2016).	Using	learning	analytics	to	characterize	student	experimentation	strategies	in	engineering	design.	Journal	of	Learning	Analytics,	3(3),	
291–317.	http://dx.doi.org/10.18608/jla.2016.33.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 293	

short	 engineering	 design	 task.	 Their	 approach	 included	 the	 use	 of	machine	 learning	 on	human-coded	
video	 data	 to	 identify	 patterns	 in	 engineering	 design	 and	 developed	 a	 fine-grained	 representation	 of	
engineering	practices.	Their	work	is	notable	in	the	specific	recommendations	they	provided	to	improve	
engineering	education	and	discussions	of	how	a	hybrid	human–computer	analysis	approach	can	make	
learning	analytics	more	central	to	education	research.	

As	 we	 examine	 experimentation	 behaviours	 during	 engineering	 design,	 it	 is	 necessary	 to	 define	 the	
place	 of	 scientific	 inquiry	 in	 relationship	 to	 design	 inquiry.	 Inquiry	 and	 engineering	 design	 are	 both	
dynamic	 processes	 (NAGB,	 2013).	 Nonetheless,	 engineering	 design	 and	 scientific	 inquiry	 also	 have	
differences,	specifically	regarding	the	type	of	questions	that	guide	the	inquiry.	In	our	approach,	we	see	
scientific	 inquiry	 and	design	 inquiry	 to	 be	 integrated	 in	ways	 that	 the	designer	 seamlessly	 engages	 in	
both	 (Purzer	 et	 al.,	 2015).	 The	 design	 process	 starts	with	 a	 problem	 or	 need	 that	 has	many	 possible	
solutions.	These	solutions	are	 tested	and	refined	through	micro-iterations	until	an	ultimate	solution	 is	
chosen.	During	this	process,	the	designers	must	conduct	valid	experiments	to	learn	about	the	variables	
and	 about	 how	 the	 different	 elements	 work	 in	 order	 to	 optimize	 the	 solution	 (Crismond	 &	 Adams,	
2012).	

2.2 Assessment of Engineering Design 

In	prior	studies,	several	approaches	that	combine	qualitative	data	with	quantitative	analyses	have	been	
used	to	assess	engineering	design.	For	example,	Atman	and	colleagues		used	verbal	protocol	analysis	to	
identify	 differences	 between	 novice	 (student)	 and	 expert	 (professional)	 designers	 (Atman,	 Chimka,	
Bursic,	&	Nachtman,	1999;	Atman	et	al.,	2007).	 In	these	studies,	 researchers	asked	the	participants	to	
think	 aloud	while	working	on	 a	 task	 about	 designing	 a	 playground.	Although	 this	 technique	has	 been	
demonstrated	to	be	effective	 in	capturing	elements	of	engineering	design,	some	verbalizations	do	not	
always	 represent	 the	 design	 knowledge	 that	 students	 applied	 (Atman,	 Kilgore,	 &	 McKenna,	 2008).	
Furthermore,	this	data	collection	process	is	labour-intensive	and	time	consuming.	

Another	assessment	approach	 is	 to	 request,	 as	part	of	a	design	 report,	 a	description	of	how	students	
applied	 the	 design	 process	 to	 solve	 a	 problem	 (Hirsch,	 Berliner-Heyman,	 Carpinelli,	&	 Kimmel,	 2012).	
Hirsch	and	colleagues	(2012)	asked	one	question	prompting	students	to	write	about	specific	steps	they	
used	 in	 their	design	process.	 In	another	effort	 to	assess	student	design,	Sims-Knight	and	collaborators	
(2004)	used	concept	maps	to	assess	student	understanding	of	the	engineering	design	process.	In	these	
examples,	however,	students’	ability	 to	describe	the	steps	used	to	describe	a	design	process	does	not	
imply	that	they	know	how	to	apply	this	knowledge.	

Students	have	also	being	asked	to	critique	other	students’	design	processes.	For	instance,	Bailey	(2008)	
implemented	 this	 strategy	 employing	 a	 scoring	 and	 feedback	 guide	 that	 students	 used	 to	 evaluate	 a	
given	design	solution.	Hsu,	Cardella,	and	Purzer	(2014)	followed	a	similar	approach,	asking	elementary	
students	 to	 review	 another	 hypothetical	 student’s	 design	 process	 and	 comment	 on	 1)	 “what	 is	 good	
about	 the	design	process”	 and	2)	 “how	 the	process	 can	be	 improved”	 (p.	 306).	 In	 this	 case,	 students	
were	interviewed	in	order	to	explore	their	understanding	about	the	design	process.	Additionally,	Purzer,	
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Hilpert,	and	Wertz	(2011)	created	a	survey	aimed	at	identifying	the	challenges	students	faced	during	a	
design	 project	 and	 how	 these	 challenges	 changed	 over	 time.	 Finally,	 Sobek	 (2002)	 and	 Seepersad,	
Green,	&	 Schmidt	 (2006)	 introduced	design	 journals	 as	 part	 of	 semester-long	undergraduate	 courses.	
While	 the	diversity	 of	 assessment	methods	 is	 promising,	 the	 inferences	 that	 can	be	made	with	 these	
results	can	also	be	diverse.	

Researchers	 have	 also	 used	 graphical	 software	 to	 capture	 the	 design	 rationale	 of	 a	 design	 team	 (van	
Schaik,	 Scanlan,	 Keane,	 Takeda,	&	Gorisse,	 2011).	 During	 the	 design	 of	 an	 unmanned	 air	 vehicle,	 van	
Schaik	 and	 colleagues	 (2011)	 asked	 designers	 to	 record	 their	 rationales	 using	 Compendium,	 a	
collaborative	 mapping	 software.	 The	 findings	 of	 this	 study	 suggest	 that	 the	 software	 was	 useful	 in	
capturing	 the	 design	 rationale	 on	 certain	 phases	 of	 the	 design	 process.	 However,	 during	 the	
embodiment	 phase,	 when	 designers	 are	 making	 the	 connection	 between	 the	 concept	 and	 the	 final	
design,	 it	was	more	difficult	 to	 capture	 the	designers’	 rationale.	 A	 possible	 explanation	 is	 that	 during	
that	phase,	 the	designers	are	 immersed	 in	 the	CAD	 tool.	 Therefore,	 the	authors	 suggested	 that	 these	
tools	should	be	embedded	within	the	CAD	tool	in	order	to	be	more	effective.	Furthermore,	although	this	
approach	uses	technology	to	organize	the	data,	those	ultimately	responsible	for	reporting	their	design	
process	are	the	designers	themselves.	

These	assessment	methods	discussed	above	involve	manual	approaches,	which	are	time	consuming	and	
non-scalable	(Xie,	Zhang,	Nourian,	Pallant,	&	Hazzard,	2014).	It	would	be	infeasible	to	analyze	the	data	
from	 hundreds	 of	 students,	 gathered	 from	 think-aloud	 protocols,	 design	 documents,	 or	 interviews.	
Moreover,	 all	 these	 techniques	 have	 demonstrated	 certain	 limitations,	 and	 there	 is	 yet	 not	 a	 perfect	
recipe	to	assess	engineering	design	practices	and	related	competencies.	

2.3 Technology-Based Assessments 

Engineering	design	has	been	included	within	one	of	the	three	assessment	targets	of	the	Technology	and	
Engineering	Literacy	(TEL)	Framework	for	the	2014	National	Assessment	of	Educational	Progress	(NAGB,	
2013)	 and	 in	 the	winter	 of	 2014	 a	 computer-based	NAEP	 TEL	 test	was	 taken	by	 a	 national	 sample	 of	
eighth-grade	 students	 in	 the	 United	 States	 (NAEP,	 2014).	 Technology-based	 assessments	 have	 now	
acquired	high	relevance	because	of	 the	advantages	 they	can	provide.	Large	amounts	of	 relevant	data,	
real-time	feedback,	and	scalable	and	personalized	support	can	be	achieved	now	with	the	use	of	these	
type	of	assessments	(USDE,	2010).	Still,	taking	advantage	of	automated	assessment	techniques	becomes	
challenging	 for	 open-ended	 tasks	 such	 as	 engineering	 design	 (Worsley	 &	 Blikstein,	 2014).	 Therefore,	
Worsley	 and	 Blikstein	 (2014)	 suggest	 that	 it	 is	 necessary	 to	 combine	 learning	 analytics	 with	 human-
based	qualitative	analysis	to	be	able	to	draw	strong	conclusions	about	the	learning	process.	

Document	analysis	using	computational	methods	 is	one	of	 the	techniques	 that	have	been	explored	to	
characterize	 student	 design	 processes	 (Dong,	 Hill,	 &	 Agogino,	 2004).	 Dong	 et	 al.	 (2004)	 used	 latent	
semantic	analysis	(LSA)	to	analyze	collaborative	team	design	documentation	and	personal	reflections	on	
the	 process.	 Another	 technique	 is	 the	 use	 of	 learning	 analytics	 to	 assess	 different	 elements	 of	 the	
learning	process	(e.g.,	Romero-Zaldivar,	Pardo,	Burgos,	&	Delgado,	2012;	Xie,	Zhang,	Nourian,	Pallant,	&	
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Hazzard,	2014).	This	technique	uses	the	interactions	between	learners	and	technological	devices	to	draw	
inferences	 about	 the	 learner,	 the	 tool,	 and	 the	 learning	 process	 (Mirriahi,	 Gašević,	 Long,	 &	 Dawson,	
2014).	Through	unobtrusive	logging	of	user	interactions,	hundreds	of	megabytes	or	even	gigabytes	are	
generated	to	be	analyzed	as	a	form	of	assessment	(Xie,	Zhang,	Nourian,	Pallant,	&	Bailey,	2014).	

There	 are	 several	 ways	 of	 logging	 and	 analyzing	 user	 interactions.	 For	 example,	 Blikstein	 (2011)	 and	
Piech,	Sahami,	Koller,	Cooper,	and	Blikstein,	(2012)	employed	screenshots	of	user	interactions	to	assess	
different	 processes.	Worsley	 and	 Blikstein	 (2014)	 also	 used	 snapshots,	 but	 in	 this	 case,	 to	 assess	 the	
engineering	design	process.	They	first	qualitatively	analyzed	the	snapshots	to	create	codes	to	the	actions	
performed	 by	 the	 participants.	 After	 that,	 they	 used	 an	 algorithm	 to	 characterize	 the	 student	 design	
processes.	Finally,	they	corroborated	their	findings	and	provided	additional	details	through	a	qualitative	
analysis.	Using	the	same	activity,	Worsley	and	Blikstein	(2013)	also	captured	and	analyzed	gesture	data	
using	Kinect	to	compare	the	differences	between	novice	and	expert	hand	movements.	

CAD	 tools	 have	 also	 been	 used	 to	 understand	 the	 design	 process	 (e.g.,	 Sung,	 Ritchie,	 Rea,	&	 Corney,	
2011;	Xie,	Zhang,	Nourian,	Pallant,	&	Bailey,	2014;	Xie,	Zhang,	Nourian,	Pallant,	&	Hazzard,	2014).	Purzer	
and	collaborators	(2015)	used	a	CAD	tool	in	an	exploratory	study	to	understand	how	engineering	design	
and	scientific	explanations	related	to	each	other.	The	 learning	activity	employed	by	the	research	team	
consisted	 of	 applying	 the	 engineering	 design	 process	 to	 create	 a	 model	 of	 an	 urban	 city	 block	 of	
buildings	 to	 minimize	 the	 energy	 needed	 in	 those	 buildings.	 Students	 tested	 their	 designs,	 analyzed	
building	performance,	 and	 refined	 their	 designs	 after	 considering	 constraints	 and	 trade-offs.	 The	CAD	
tool	 had	 the	 capability	 of	 recording	 and	 reproducing	 the	 student	 design	 processes	 via	 time-lapse	
photography.	 These	 videos	 were	 qualitatively	 analyzed	 and	 contrasted	 to	 student	 models	 and	
reflections.	

The	same	CAD	tool	has	been	employed	to	 log	and	analyze	the	design	process	 in	order	 to	characterize	
students’	design	pathways.	For	example,	Xie,	Zhang,	Nourian,	Pallant,	&	Hazzard	(2014)	used	the	Time	
Series	Analysis	method	 to	characterize	differences	 in	 students	design	processes.	The	 interactions	with	
the	 software	 were	 analyzed	 as	 a	 sequence	 of	 data	 points	 using	 techniques	 such	 as	 autocorrelation	
analysis	or	cross-correlation	analysis	(Wei,	2005).	These	techniques	helped	to	identify	recurrent	actions	
and	sub	processes,	as	well	as	the	amount	of	time	spent	on	these	activities.	From	two	different	studies,	
the	research	team	concluded	that	valuable	insights	can	be	drawn	from	this	type	of	analysis	(Xie,	Zhang,	
Nourian,	Pallant,	&	Bailey,	2014;	Xie,	Zhang,	Nourian,	Pallant,	&	Hazzard,	2014)	because:	

• unobtrusive	 logging	 allows	 the	 teacher	 or	 the	 research	 team	 to	 gather	 data	 from	 the	
interactions	while	the	students	focus	on	the	design	challenge	

• student	engagement	in	the	design	challenges	can	be	easily	assessed	from	the	data	
• the	 scalable	 nature	 of	 automated	 data	 analysis	 allows	 the	 teacher	 to	 have	 a	 real-time	

assessment	of	the	situation	
• the	macro-	and	micro-level	design	iterations	can	be	expressed	and	visualized	with	a	visual	model	
• differences	between	design	processes	for	different	populations	can	be	detected	
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• the	 learning	analytics	 can	be	 complimented	with	qualitative	data	 for	additional	 insights	 and	a	
deeper	exploration	of	the	design	process	

• Time	 Series	 Analysis	 can	 be	 used	 to	 identify	 the	 effect	 of	 instructional	 strategies	 in	 an	
engineering	design	challenge	

	
Technology-based	 assessment	 techniques	 seem	 to	 be	 a	 promising	 tool	 to	 scale-up	 the	 evaluation	 of	
student	learning.	However,	additional	work	is	required	before	these	automated	assessment	approaches	
do	not	require	manually	analyzed	data	to	make	a	deeper	sense	of	the	design	process.	
	
2.4 Understanding Differences between Designers 

An	important	distinction	to	make	in	order	to	assess	the	design	process	effectively	is	to	understand	what	
can	 be	 considered	 an	 informed	 designer	 versus	 a	 beginning	 designer.	 In	 this	 research,	 we	 are	
particularly	 interested	 in	 student	 designers	 at	 the	 pre-college	 level.	 The	 lower	 anchor	 of	 the	 student	
grouping	is	“beginning	designers”	or	student	designers	with	little	to	no	design	experience.	The	high	end	
of	this	student	development	scale	is	the	“informed	designer”	(Crismond	&	Adams,	2012).	Because	K–12	
and	undergraduate	students	are	not	 likely	to	accumulate	the	 level	of	practice	needed	to	attain	expert	
designer	status,	 their	 skills	when	developed	are	 less	 reliable	and	 their	understandings	are	much	more	
situation-specific	than	those	of	experts	(Crismond	&	Adams,	2012).	Thus,	informed	designers,	while	not	
experts,	are	engaged	and	knowledgeable	in	design	beyond	that	of	true	beginners.	

Researchers	 have	 described	 and	 contrasted	 the	 characteristics	 of	 expert	 and	 novice	 designers	 from	
different	perspectives	(Atman	et	al.,	2007;	Crismond	&	Adams,	2012;	Worsley	&	Blikstein,	2014).	In	the	
context	of	engineering	design,	it	is	usually	expected	that	expert	designers	spend	more	time	planning	and	
building	 than	 novice	 designers	 (Worsley	&	 Blikstein,	 2014).	 Specifically,	 expert	 designers	 spend	more	
time	in	problem	scoping	and	gathering	significantly	more	information	than	novice	designers	(Atman	et	
al.,	1999;	2007).	Problem	scoping	can	be	described	as	the	phase	in	which	the	designers	understand	the	
problem,	 gather	 information,	 identify	 criteria,	 and	 state	 assumptions	 (Atman	 et	 al.,	 2007).	 The	 time	
spent	on	this	phase	is	positively	correlated	to	customer	satisfaction	and	the	quality	of	the	design	(Jain	&	
Sobek	2006).	

Worsley	&	Blikstein	(2014)	identified	that	novice	designers	undo	their	actions	more	often	than	experts.	
Atman	et	al.	(1999)	highlighted	a	similar	result,	suggesting	that	senior	designers	make	more	transitions	
between	different	phases	than	novice	designers.	Additional	qualitative	analysis	showed	that	experts	set	
short-term	goals,	as	they	would	go	back	to	planning	activities	after	creating	certain	artifacts	(Worsley	&	
Blikstein,	2014).	

Crismond	 and	 Adams	 (2012)	 analyzed	more	 than	 80	 publications	 on	 design	 cognition,	 and	 created	 a	
framework	 to	 integrate	 the	 findings	 in	order	 to	 support	design	 teaching	and	 learning.	The	 framework	
consists	of	a	matrix	describing	how	beginning	designer	practices	differ	from	informed	designer	practices	
(Crismond	&	Adams,	2012).	While	the	beginning	designer	is	assumed	to	have	little	to	no	experience	or	
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formal	 training	 in	design,	 the	 informed	designer	has	 certain	experience	and	 formal	 training	 in	design,	
and	is	located	in-between	the	beginning	designer	and	the	expert	designer.	The	framework	includes	nine	
critical	design	practices	(Crismond	&	Adams,	2012):	1)	understand	the	challenge,	2)	build	knowledge,	3)	
generate	 ideas,	 4)	 represent	 Ideas,	 5)	weigh	 options	 and	make	 decisions,	 6)	 conduct	 experiments,	 7)	
troubleshoot,	 8)	 revise/iterate,	 and	 9)	 reflect	 on	 the	 process.	 Among	 these	 design	 strategies,	 the	
informed	 designers	 iterate	 through	 these	 steps	 by	 generating	 and	 evaluating	 ideas,	 conducting	
experiments,	reviewing	literature,	and	thinking	critically.	

Regarding	experimentation	strategies,	informed	designers	identify	and	conduct	valid	tests	to	assess	the	
appropriateness	of	 the	proposed	 solution	 (Crismond	&	Adams,	 2012).	 These	 strategies	 inform	 further	
actions	on	the	design	process	aiming	to	optimize	the	final	product.	Hence,	experimentation	of	informed	
designers	focuses	on	relevant	variables	that	will	allow	them	to	find	an	optimal	solution.	In	contrast,	the	
beginning	designers	conduct	very	limited	experimentation.	The	experimentation	of	beginning	designers	
often	confounds	the	variables	by	manipulating	multiple	variables	at	the	same	time.	Therefore,	results	of	
the	experimentation	process	are	not	clear	or	informative	to	the	process.	

The	 next	 section	 describes	 a	 model	 that	 intends	 to	 support	 the	 identification,	 characterization,	 and	
assessment	of	student	strategies	to	conduct	experiments	within	the	engineering	design	process.	

3 PROPOSED MODEL: EXPERIMENTATION STRATEGIES IN DESIGN 

Experimentation	 is	 an	 important	 element	 of	 engineering	 design	 (Crismond	&	 Adams,	 2012;	 Litzinger,	
Lattuca,	 Hadgraft,	 &	 Newstetter,	 2011).	 However,	 experimentation	 strategies	 in	 the	 context	 of	
engineering	 design	 are	 different	 from	 those	 in	 science	 (Schauble,	 Klopfer,	 &	 Raghavan,	 1991).	
Experimentation	 in	 science	 aims	 to	 understand	 the	 relationship	 among	 variables,	 to	 explain	 scientific	
phenomena.	Experimentation	 in	design	 focuses	on	 identifying	and	manipulating	 the	relevant	variables	
to	optimize	the	outcome.	

Experimentation	in	an	engineering	learning	environment	can	take	different	forms.	For	instance,	students	
can	 collect	 data	 and	 confirm	design	performance.	 Students	 can	 also	use	experimentation	 to	 compare	
two	alternatives	of	a	product	or	design.	This	experimentation	allows	them	to	make	informed	decisions	
among	 the	 potential	 alternatives.	Moreover,	 students	 can	modify	 independent	 variables	 and	 use	 the	
collected	data	to	inform	future	design	decisions.	

We	 describe	 the	 differences	 on	 experimentation	 strategies	 between	 a	 beginning	 and	 an	 informed	
designer	 as	 a	 continuum	 (see	 Figure	 1).	 Supporting	 evidence	 for	 our	 Experimentation	 Strategies	 in	
Design	Model	 comes	 from	prior	 literature	by	Crismond	and	Adams	 (2012),	Schauble	et	al.	 (1991),	and	
Litzinger	et	al.	(2011).	At	the	beginning	of	this	range,	a	beginning	designer	tends	to	run	few	or	no	tests	
on	 a	 design	 prototype	 because	 they	may	 feel	 conducting	 experiments	 is	 not	 relevant	 for	 the	 design	
activity.	 Thus,	 the	 beginning	 designer	 focuses	 on	 creating	 a	 prototype	 without	 collecting	 any	 data.	
Furthermore,	 when	 beginning	 designers	 collect	 data,	 they	 often	 fail	 to	 use	 these	 results	 to	 inform	
further	design	actions.	As	 the	student	designer	gains	experience,	she	or	he	 is	expected	to	realize	how	
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important	data	collection	 is	 in	order	 to	understand	what	 is	happening	with	 their	prototype.	However,	
these	initial	experiments	tend	to	be	unfocused	and	the	designer	continues	modifying	multiple	variables	
within	a	single	experiment,	which	Crismond	&	Adams	(2012)	calls	a	confounded	experiment.	Therefore,	
the	designer	is	unable	to	identify	the	relevant	variables	and	optimize	the	solution.	

The	 informed	designers	are	 located	towards	the	end	of	 the	continuum.	With	experience,	 the	designer	
knows	that	it	is	important	to	focus	on	one	specific	variable	at	a	time	and	to	perform	valid	tests	in	order	
to	 inform	 the	 next	 steps	 towards	 a	 comprehensive	 solution.	 Hence,	 the	 designer	 carries	 out	 specific	
systematic	experiments	followed	by	specific	actions	related	to	the	outcomes	of	the	experiment.	

	
Figure	1.	Characteristics	of	experimentation	strategies	along	a	continuum	of	level	of	experience.	

In	 this	 context,	we	 define	 a	 confounding	 experiment	 as	 the	 process	 of	 collecting	 data	 and	modifying	
multiple	independent	variables	before	collecting	data	again,	leading	to	ambiguous	results.	Likewise,	we	
define	 a	 systematic	 experiment	 as	 the	 process	 of	 collecting	 data,	 modifying	 only	 one	 variable,	 and	
collecting	data	again	to	visualize	the	effect	of	this	independent	variable	on	the	dependent	variable	given	
by	 the	 data	 collection.	 These	 extremes	 of	 the	 continuum	 represent	 the	 changes	 in	 experimentation	
strategies	as	a	student	moves	towards	informed	design.	

Figure	 2	 describes	 the	 sequence	 of	 generic	 steps,	 based	 on	 investigate-and-redesign	 task	 sequence	
(Crismond,	 2001),	 which	 comprises	 systematic	 experiments.	 In	 the	 first	 step,	 the	 designer	 creates	 a	
prototype	 to	 evaluate.	 The	 second	 step	 consists	 of	 collecting	 and	 analyzing	 data	 focusing	 on	 specific	
independent	and	dependent	variables.	Based	on	the	results	from	the	data	analysis,	the	designer	could	
make	 some	 changes	 to	 the	 prototype	 modifying	 the	 independent	 variables	 identified	 as	 relevant	 to	
optimize	the	performance	of	the	prototype.	During	the	last	step,	the	designer	goes	back	to	collect	and	
analyze	more	data	to	identify	the	effect	of	the	changes	made.	
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Figure	2.	Sequence	of	steps	for	systematic	experiments.	

Our	model	of	Experimentation	Strategies	 in	Design	 aims	 to	 identify	a	 sequence	of	actions	with	a	CAD	
tool	 to	 describe	 student	 experimentation	 strategies	with	 large	 datasets.	Our	model	 can	 also	 describe	
students’	approaches	 to	experimentation.	Questions	such	as	how	many	experiments	a	student	carries	
out,	how	many	of	these	experiments	are	systematic,	and	how	many	times	a	student	iterates	through	a	
specific	experiment,	can	help	identify	how	experienced	a	designer	is.	

4 METHODS 

The	purpose	of	 this	study	 is	 two-fold.	We	first	propose	a	 learning	analytics	model	 to	describe	student	
experimentation	processes.	We	then	utilize	this	model	to	correlate	student	experimentation	strategies	
with	 the	 performance	 of	 their	 designed	 prototypes.	 In	 the	 sections	 below,	 we	 first	 introduce	 the	
computer-aided	design	CAD	 tool	 students	 used,	 called	 Energy3D.	We	 then	describe	 particulars	 of	 the	
research	methods	performed.	

Research	 Question	 1:	 What	 is	 the	 relationship	 between	 the	 number	 of	 systematic	 experiments	 and	
levels	of	student	strategic	knowledge?	
	
Research	Question	2:	What	is	the	relationship	between	the	number	of	systematic	experiments	and	the	
quality	of	student	design	solutions?	
	
4.1 Energy3D 

Energy3D	 is	an	open-source	software	 (Concord,	2015)	 that	allows	students	 to	create	3D	buildings	and	
simulate	energy	consumption	and	construction	costs	 (Xie,	Zhang,	Nourian,	Pallant,	&	McIntyre,	2014).	
Energy3D	 provides	 the	 tools	 for	 a	 novice	 to	 design,	 analyze,	 and	 build	 energy-efficient	 buildings	
(Concord,	 2015).	 The	 software	 includes	 energy	 consumption	 simulations	 based	 on	 computational	
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physics	to	allow	the	user	to	make	informed	design	decisions.	Figure	3	shows	three	examples	of	buildings	
and	simulations	students	created	using	Energy3D.	

	
Figure	3.	Sample	buildings	created	using	Energy3D	(Concord,	2015).	

Energy3D	logs	all	user	 interaction	data	 in	the	background	in	a	non-intrusive	way	as	students	build	and	
test	 their	 solutions.	 Energy3D	 creates	 a	 text	 file	 for	 each	 student	 with	 a	 list	 of	 all	 the	 interactions	
including	the	following	information:	1)	the	date	and	time	the	action	was	carried	out;	2)	the	file	in	which	
the	action	was	 carried	out;	3)	 the	description	of	 the	action	 (e.g.,	Add,	Edit,	Move,	Resize);	 and	4)	 the	
object	 towards	 which	 the	 action	 was	 directed.	 Energy3D	 also	 has	 the	 capability	 of	 reproducing	 the	
design	process	as	a	running	slide	show	(design	replays),	similar	to	time-lapse	photography.	Not	only	 is	
the	model	 recreated,	but	 student	 reflections	are	also	 reproduced	 synchronously.	 Thus,	design	 replays	
allow	the	educator	or	researcher	to	understand	what	students	do	during	the	design	process	(Purzer	et	
al.,	2015).	

4.2 Participants 

This	 study	was	 conducted	 at	 a	 large,	 urban	middle	 school	 in	 the	Midwest	United	 States.	 Participants	
included	 199	 students	 across	 eight	 (8)	 eighth-grade	 classes	 (ages	 13–14)	 during	 the	 fall	 of	 2014.	 The	
students	who	took	part	in	the	study	had	little	to	no	previous	design	experience.	The	sample	included	a	
nearly	even	mix	of	female	(n	=	98)	as	male	(n	=	101)	students.	The	number	of	participants	was	48	for	the	
first	part	of	the	study	and	55	for	the	second	part	of	the	study.	After	a	brief	introduction	to	Energy3D	(as	
students	had	no	previous	experience	with	the	software	or	other	CAD	software),	students	were	given	the	
task	of	designing	an	energy-plus	home,	a	home	 that	 consumes	no	net	energy	over	a	year,	 along	with	
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other	design	constraints	such	as	cost.	(See	the	complete	challenge	in	Appendix	A.)	

In	addition,	the	task	explicitly	asked	students	to	design	three	types	of	houses:	Colonial,	Cape	Cod,	and	
Ranch.	Instructors	allocated	two	class	periods	for	each	of	the	three	types	of	houses	for	a	total	of	six	days	
of	design	 time.	Over	 these	 six	days,	 students	were	 instructed	 to	plan,	 construct,	experiment,	 analyze,	
optimize,	 and	 document	 each	 of	 their	 three	 designs.	 Students	 were	 reminded	 to	 revisit	 any	 of	 their	
designs	over	the	duration	of	the	six	days,	allowing	multiple	iteration	opportunities.	

4.3 Characterization of “Conducting Experiments” Actions 

Experimentation	behaviours	may	vary	among	different	design	challenges,	tools,	and	contexts.	Therefore,	
our	 identification	 of	 student	 experimentation	 strategies	 started	 by	 defining	 what	 systematic	
experiments	a	student	can	carry	out	for	this	particular	context	and	within	the	boundaries	of	the	design	
challenge	 outlined	 earlier.	 Using	 a	 preliminary	 qualitative	 data	 analysis	 on	 student	 reports	 and	
reflections	for	a	similar	design	challenge,	the	research	team	identified	a	set	of	experiments	and	variables	
that	students	are	 likely	to	explore	while	solving	the	design	challenge.	As	shown	 in	Table	1,	we	explain	
student	 experimentation	 strategies	 by	 a	 set	 of	 design	 actions,	 design	 variables	 these	 actions	 have	
explored,	 and	 design	 analysis	 tools	 used	 to	 test	 these	 variables.	 For	 example,	 in	 the	 scenario	 that	 a	
student	 is	 exploring	 how	 trees	 planted	 near	 a	 building	 impact	 its	 energy	 performance.	 The	 student	
reflects,	“the	amount	of	windows	with	trees	relatively	close	to	the	windows	allows	the	sunlight	to	warm	
the	house	in	the	window,	but	the	trees	provide	shade	for	the	windows	in	the	summer	months	which	ends	
up	cooling	the	house.”	To	accomplish	the	given	task,	the	student	would	need	to	interact	with	Energy3D	
to	 create,	move,	or	 resize	windows	or	 trees.	Then,	 they	would	use	 the	analysis	 tools	 to	 identify	what	
could	be	the	best	approach	based	on	their	constraints.	The	effect	of	these	changes	on	the	annual	energy	
consumption	 is	not	 the	 same	 for	different	 seasons	 (e.g.,	 summer	and	winter).	Hence,	 students	would	
need	to	collect	data	more	than	once	while	modifying	these	variables	in	order	to	optimize	their	solution.	

Table	1.	Design	goals,	actions,	variables,	and	analysis	tools	using	Energy3D	
Experimentation	Goal	 Design	Actions	 Design	

Variables	
Design	Analysis	

Tools	
Testing	changes	in	energy	

consumption	
Add,	move,	or	resize	windows	
and	move	trees	to	increase	
energy	efficiency	at	different	

seasons	

Windows	and	
Trees	

Energy	Annual	
Analysis/Modify	the	

Season	

Conducting	experiments	to	
optimize	annual	consumption	

of	energy	

Modify	the	roof	shape	or	the	
solar	panels	to	increase	the	
energy	generated	by	solar	

panels	

Roof–Solar	
Panel	

Interactions	

Energy	Annual	
Analysis/Modify	the	

Season	

	
The	 experimentation	 strategies	 reported	 by	 the	 students	 through	 reflections	 in	 the	 context	 of	 an	
Energy3D	design	challenge	were	employed	to	contextualize	this	study	within	the	proposed	framework	
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represented	 in	 Figure	 1	 as	 continuum	 of	 design	 experience	 and	 in	 Figure	 2	 as	 a	 sequence	 of	 design	
actions.	The	purpose	of	this	process	is	to	identify	such	sequences	of	interactions	through	the	clickstream	
data	so	that	this	information	can	be	used	to	assess	experimentation	strategies.	As	summarized	in	Table	
1,	student	experiments	are	evaluated	as	two	distinctly	different	experimentation	activities:	1)	by	testing	
changes	 in	 energy	 consumption	 after	 adding	 or	 modifying	 windows	 or	 trees,	 and	 changing	 between	
seasons	 and	 2)	 by	 conducting	 experiments	 to	 optimize	 the	 annual	 consumption	 of	 energy	 based	 on	
modifications	in	shape,	location,	and	orientation	of	roofs	and	solar	panels.	

4.3.1 Experimentation Strategy #1: Testing changes in energy consumption after adding or 
modifying windows or trees, and changing between seasons. 

	
This	design	behaviour	represents	experiments	that	students	carry	out	by	adding,	modifying,	or	removing	
windows	or	 trees,	 and	 collecting	energy	 consumption	data.	 Students	explore	 the	 interaction	between	
trees	and	windows	to	reduce	temperature	during	the	summer	season	while	 increasing	temperature	 in	
the	 winter.	 The	 location	 of	 the	 windows	 and	 trees	 as	 well	 as	 the	 type	 of	 trees	 (i.e.,	 deciduous	 vs.	
evergreen)	could	keep	the	house	very	cold	during	the	winter,	generating	an	additional	consumption	due	
to	 heating.	 Here,	 the	 analysis	 tools	 such	 as	 the	 “Energy	 Annual	 Analysis”	 and	 “Modify	 Seasons”	 are	
critical	 in	 supporting	decisions.	 Figure	4	depicts	 the	 sequence	of	 interactions	 for	 this	experimentation	
process.	As	described	earlier,	we	expect	students	to	1)	identify	one	variable,	which	in	this	case	would	be	
the	 location	 or	 size	 of	 a	 window	 or	 tree;	 2)	 collect	 data:	 energy	 annual	 analysis	 or	 change	 in	 solar	
radiation	given	by	the	month	of	the	year;	3)	modify	the	independent	variable;	and	4)	collect	data	again	
to	test	their	modifications.	

	
Figure	4.	Sequence	of	actions	for	a	student	testing	changes	in	energy	consumption	after	adding	or	

modifying	windows	or	trees,	and	changing	between	seasons.	

	

1.	Add,	move	or	
resize	windows	

/	trees	

2.	Energy	
Annual	Analysis	

/	Seasonal	
Change

3.	Add,	move	or	
resize	windows	

/	trees

4.	Energy	
Annual	Analysis	

/	Seasonal	
Change
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4.3.2 Experiment Strategy #2: Conducting experiments to optimize the annual consumption of 
energy based on modifications in shape, location, and orientation of roofs and solar 
panels. 

This	design	behaviour	represents	conducting	experiments	to	optimize	the	interaction	between	the	roof	
shape	 and	 the	 solar	 panel	 location	 and	 angle.	 Depending	 on	 the	 location	 of	 the	 house	 and	 the	
orientation	of	the	solar	panels,	the	energy	efficiency	can	change.	This	process	was	also	identified	from	
the	qualitative	analysis	of	student	reports	and	reflections	after	being	exposed	to	the	design	challenge.	
For	example,	one	of	the	students	stated	in	their	designer	notes:	

I	reconfigured	the	solar	panels’	angle	and	placement	on	the	house	many	times.	I	tested	several	
different	angles	 for	 the	roof	on	the	side	with	solar	panels	 to	determine	which	angle	generated	
the	most	 energy,	 then	moved	 the	panels	 around	on	 the	properly	 angled	 roof	 to	maximize	 the	
energy	generation.	

Figure	5	depicts	 the	sequence	of	steps	 the	students	are	expected	to	 follow	when	they	 focus	on	 these	
variables	for	systematic	experimentation.	According	to	our	model,	Experimentation	Strategies	in	Design,	
the	 sequence	 of	 design	 behaviour	 includes	 1)	 add/modify	 solar	 panels	 or	 roofs,	 2)	 energy	 annual	
analysis,	3)	add/modify	solar	panels	or	roofs,	and	4)	another	energy	annual	analysis	(see	Figure	5).	

4.4 Data Collection and Data Analysis 

4.4.1 Capturing Learner Interaction with Clickstream Data 
The	data	analysis	 explaining	 learner	 interactions	was	 conducted	using	 the	 clickstream	data	 (Figure	6).	
First,	 the	 clickstream	 data	 are	 captured	 in	 a	 text	 file	 for	 each	 student	 participating	 on	 the	 design	
challenge.	Once	 the	 text	 file	has	been	 loaded,	 the	different	actions	were	organized	 into	multiple	 time	
series	(i.e.,	one	per	type	of	action)	describing	how	many	times	this	action	occurred	during	a	particular	
minute	 within	 the	 activity.	 Within	 the	 Energy3D	 platform,	 there	 are	 two	 main	 types	 of	 actions:	
construction	and	analysis.	Construction	actions	correspond	to	adding,	modifying,	removing,	resizing,	or	
moving	features	such	as	walls,	windows,	doors,	and	roofs	of	the	house.	Analysis	actions	correspond	to	
executing	 data	 collection	 tools	 such	 as	 the	 energy	 annual	 analysis	 or	 changing	 a	 variable	 to	 see	 the	
effect	of	such	modification	on	energy	performance.	
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Figure	5.	Sequence	of	actions	for	a	student	conducting	experiments	to	optimize	the	annual	

consumption	of	energy	based	on	modifications	in	shape,	location,	and	orientation	of	roofs	and	solar	
panels.	

Using	 the	 proposed	 model,	 we	 identified	 the	 number	 of	 data	 collection	 activities	 with	 potential	
confounding	variables,	and	the	number	of	systematic	experiments.	To	distinguish	among	beginning-to-
informed	designers,	the	number	of	data	collection	activities	related	to	annual	energy	consumption	are	
recorded	as	a	measure	of	experimentation	with	potential	confounded	variables	 to	represent	the	early	
levels	 of	 design	 proficiency	 shown	 in	 Figure	 1.	 To	 distinguish	 informed	 designers,	 the	 number	 of	
sequences	representing	controlled	systematic	experiments	were	identified	and	counted.	In	our	context,	
controlled	systematic	experimentation	has	been	defined	as	completing	two	separate	 interactions	with	
trees,	windows,	and	analyses,	as	well	as	a	reflection	on	the	experiment	outcomes.	All	these	activities	are	
expected	to	occur	within	a	window	of	time.	A	calibration	study	was	conducted	to	determine	how	long	
this	window	of	time	should	be.	This	calibration	process	determined	that	the	average	time	that	students	
needed	 to	 run	 the	 analysis,	 analyze	 the	 results,	 and	 make	 changes	 in	 their	 design,	 and	 execute	 the	
analysis	again	to	complete	the	cycle	of	systematic	experiments	was	20	minutes.	

1.	Add/Modify	
Solar	Panels	or	

Roofs

2.	Energy	
Annual	
Analysis

3.	Add/Modify	
Solar	Panels	or	

Roofs

4.	Energy	
Annual	
Analysis
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Figure	6.	Data	analysis	process	for	the	clickstream	data.	

Note:	The	gray	arrows	point	to	sample	files.	
	
4.4.2 Post-test of Design Strategies 
After	 students	 concluded	 the	 design	 challenge,	 they	 completed	 a	 post-test	 that	 measured	 students’	
design	 strategies,	 specifically	 students’	 ability	 to	 demonstrate	 their	 design	 decisions	 and	 justify	 these	
decisions	 with	 scientific	 reasoning.	 The	 test	 consisted	 of	 four	 open-ended	 questions	 asking	 about	
strategies	students	used	to	keep	a	house	warm	during	the	winter	or	cool	during	the	summer,	improving	
overall	home	energy	efficiency,	and	tests	students	could	conduct	in	efforts	to	improve	energy	efficiency:	

1. Let’s	 say	we	want	 to	 keep	 this	 building	warm	 in	 the	winter.	What	 are	 some	 strengths	 of	 this	
design	 that	would	help?	What	 are	 some	aspects	of	 this	 design	 that	will	make	 it	 hard	 to	 keep	
warm	in	winter?	

2. If	we	wanted	to	keep	this	building	cool	in	the	summer,	what	are	some	strengths	of	this	design	
that	would	help?	What	are	 some	aspects	of	 this	design	 that	will	make	 it	hard	 to	keep	cool	 in	
summer?	

3. Let’s	say	you	are	an	engineer	and	someone	asked	you	to	 improve	this	building	so	 it	would	be	
more	energy	efficient.	What	are	some	ideas	you	might	try?	

4. What	kinds	of	tests	or	experiments	would	you	try	to	see	if	your	ideas	were	working?	What	kinds	
of	information	would	be	useful	or	helpful?	

A	scoring	protocol	was	used	to	evaluate	the	student	responses	to	the	open-ended	questions.	Responses	
were	grouped	into	three	categories	of	design	strategies	demonstrated	(i.e.,	high,	intermediate,	and	low)	
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as	depicted	 in	Table	2.	The	protocol	 for	 scoring	 the	post-tests	was	developed	specific	 to	 the	 strategic	
knowledge	expected	 to	be	gained	 through	 the	Energy3D	system	and	 to	quantify	 student	 responses	 in	
order	to	be	able	to	compare	post-test	data	to	the	quantitative	log	data	statistically.	

Table	2.	Levels	of	Strategic	Design	Knowledge		
Level	 Description	 Example	

A	–	High	 Student	suggests	experimentation	within	
the	system	showing	evidence	of	
engagement	in	using	the	Energy3D	
software.	The	variables	student	has	noted	
are	reasonable	and	are	related	to	the	
software	parameters.	
	

“Adding	more	solar	panels	and	moving	
the	trees	to	the	front	would	make	this	
building	cooler	in	the	summer.	It	would	
block	the	sun,	making	it	easier	to	get	
shade.”	

B	–	Intermediate	 There	is	evidence	of	awareness	of	
parameters/variables	within	the	system.	
However,	the	elaboration	of	these	
variables	is	weak	or	incorrect.	
	

“Some	ideas	I	might	try	could	be	putting	
more	or	less	windows.”		

C	–	Low	 There	is	no	evidence	of	awareness	of	
parameters/variables	within	the	system.	
All	ideas	appear	to	be	drawn	from	
everyday	experiences.	
	

“It	would	be	hard	to	keep	it	warm	in	the	
winter	if	you	have	your	windows	open.”	

	
Hypothesis	1	
The	 research	 team	 hypothesized	 that	 significant	 differences	 exist	 on	 the	 number	 of	 systematic	
experiments	 for	 the	different	 levels	of	 strategic	 knowledge.	 To	evaluate	 this	hypothesis,	 responses	 to	
the	 post-test	 instrument	 from	 48	 students	 were	 analyzed	 and	 compared	 to	 the	 experimentation	
strategies	identified	by	the	analysis	of	clickstream	data.	
	
Hypothesis	2	
The	second	hypothesis	is	that	a	significant	strong	correlation	exists	between	the	number	of	systematic	
experiments	and	the	quality	of	the	design	the	students	submitted.	A	product	with	a	high	quality	should	
minimize	the	cost	and	the	energy	consumption	while	maximizing	the	area	of	the	house.	

4.4.3 Calculation of Solution Quality 
We	 calculated	 design	 quality	 for	 a	 design	 solution	 with	 a	 formula	 that	 normalizes	 the	 key	 design	
parameters	of	cost,	energy	consumption,	and	area	by	dividing	each	parameter	by	the	maximum	value	
within	the	sample.	Because	the	design	criteria	specified	a	maximum	construction	cost	(i.e.,	$60,000)	this	
value	was	used	in	normalizing	variable	costs.	The	quality	for	the	design	was	calculated	as:	
	



	
(2016).	Using	learning	analytics	to	characterize	student	experimentation	strategies	in	engineering	design.	Journal	of	Learning	Analytics,	3(3),	
291–317.	http://dx.doi.org/10.18608/jla.2016.33.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 307	

𝑄" =
𝐴"

max 𝐴
1 −

𝐸"
max 𝐸

+ 1 −
𝐶"
𝐶-./

	

 
In	 the	 quality	 formula,	A	 represents	 the	 area	 of	 the	 building;	max(x)	 represents	 maximum	 value	 for	
variable	x	in	the	sample;	E	represents	annual	energy	consumption;	C	represents	cost;	and	Clim	represents	
budget	limit	for	the	challenge.	The	research	team	used	the	second	design	submitted	by	the	students	to	
test	the	hypothesis	for	two	reasons.	First,	students	typically	spent	the	initial	building	design	to	explore	
the	tool	and	get	familiar	with	it.	Second,	some	students	did	not	have	the	chance	to	spend	enough	time	
working	on	the	third	design.	Therefore,	the	second	design	was	expected	to	be	the	most	thoughtful,	 in	
which	they	considered	all	criteria	and	constraints.	The	average	quality	score	was	0.46	with	a	standard	
deviation	of	0.15.	The	lowest	quality	score	was	zero	while	the	highest	score	was	1.01.	

5 RESULTS 

Hypothesis	 1:	 The	 number	 of	 systematic	 experiments	 is	 significantly	 different	 for	 different	 levels	 of	
student	strategic	design	knowledge.	

Student	experiments	were	grouped	based	on	whether	they	were	focused	and	systematic,	nonexistent,	
or	 confounded.	 The	maximum	 total	 number	 of	 confounded	 (non-systematic)	 experiments	 by	 a	 single	
student	was	66,	with	a	mean	of	12.52	and	a	standard	deviation	of	14.65.	The	number	of	students	who	
collected	data	within	the	Energy3D	system	ten	times	or	more	was	23;	seven	students	did	not	collect	any	
annual	energy	consumption	data.	

Table	3.	Descriptive	Statistics	of	the	Number	of	Systematic	and	Non-Systematic	Experiments	
Experimentation	

Type	
Min	 Max	 Mean	 Standard	

deviation	
Median	

Systematic	 0	 33	 3.93	 7.02	 0.5	
Non-systematic	 0	 66	 12.52	 14.65	 6.5	
	
The	maximum	number	of	systematic	experiments	by	an	individual	student	was	33.	Six	students	out	of	48	
completed	 more	 than	 10	 systematic	 experiments	 while	 23	 students	 did	 not	 do	 any	 systematic	
experiments.	The	average	number	of	experiments	was	3.93	with	a	standard	deviation	of	7.02.	

Figure	 7	 shows	 a	 comparison	 between	 two	 students.	 Each	 plot	 has	 tree	 graphs	 that	 represent	 the	
number	of	specific	actions	over	time.	For	example,	the	left	side	of	Figures	7a	and	7b	shows:	1)	number	
of	construction	actions	over	window	objects;	2)	number	of	construction	actions	over	tree	objects;	and	3)	
number	 of	 energy	 annual	 analysis	 actions.	 Figure	 7a	 depicts	 actions	 from	 a	 student	who	 carried	 out	
multiple	energy	annual	analysis	while	focusing	on	windows	and	trees	(see	minute	40).	This	student	also	
focused	their	attention	over	 roof	and	solar	panels,	around	minute	75.	Figure	7b	shows	a	student	 that	
carried	out	a	limited	number	of	experiments	and	that	were	not	closely	related	to	specific	actions.	

Forty-eight	students	completed	the	post-test.	Responses	from	18	students	were	identified	as	high	level,	
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15	 students	 as	 intermediate	 level,	 and	 14	 students	 as	 low	 level.	 Table	 4	 presents	 the	 descriptive	
statistics	 on	 the	 number	 of	 systematic	 experiments	 and	 total	 number	 of	 experiments	 for	 these	 three	
groups.	 The	 number	 of	 experiments	 and	 number	 of	 systematic	 experiments	 did	 not	 satisfy	 the	
assumption	 of	 normality	 for	 the	 analysis	 of	 variance.	 Therefore,	 the	 data	was	 transformed	 using	 the	
square	root	transformation,	which	is	an	appropriate	approach	for	a	count	variable	(McDonald,	2007).	

	
(a) Student	doing	systematic	experiments.	

	
(b) Student	doing	random	experiments	without	focusing	on	specific	variables.	

Figure	7.	Number	of	student	actions	over	time,	related	to	energy	annual	analysis,	windows,	and	trees.	

Analysis	 of	 variance	 showed	 a	 significant	 difference	 among	 the	 groups,	 both	 for	 the	 number	 of	
systematic	experiments	 (F(2,	45)=	9.429,	p<0.001),	and	for	the	total	number	of	experiments	 (F(2,	45)=	
12.42,	 p<0.001).	 A	 post-hoc	 analysis	 showed	 that	 the	 students	 with	 a	 low-level	 response	 did	 a	
significantly	smaller	number	of	systematic	experiments	than	students	with	intermediate-level	response	
(difference	 between	 the	means	 of	 square	 roots=	 –2.14,	p<0.001)	 and	 those	with	 high-level	 response	
(difference	between	the	means	of	square	roots=	–1.40,	p=0.01).	For	the	total	number	of	experiments,	
again	 the	 group	 with	 low-level	 response	 showed	 a	 significantly	 smaller	 number	 than	 the	 group	 of	
intermediate-level	 responses	 (difference	 =	 –2.95,	 p<0.001)	 and	 the	 group	 of	 high-level	 responses	
(difference	=	–2.03,	p=0.002).	However,	the	relationship	between	students	with	intermediate	and	high	
levels	 of	 strategic	 knowledge	 was	 not	 significant	 for	 systematic	 experimentation	 or	 number	 of	
experiments	 (difference	 between	 the	means	 of	 square	 roots	 =	 0.74,	 p=0.26,	 difference	 between	 the	
means	of	square	roots	=	0.9,	p=0.25,	respectively).	
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Table	4.	Descriptive	Statistics	for	the	Number	of	Systematic	Experiments	and	All	Experiments	
	 Systematic	Experiments	 All	Experiments	
	 Mean	 Standard	Deviation	 Mean	 Standard	Deviation	
High	Level	 4.21	 4.81	 13.58	 4.81	
Intermediate	Level	 8.53	 10.68	 23.87	 21.16	
Low	Level	 0.29	 0.83	 4.14	 5.49	

	
Hypothesis	 2:	 The	 number	 of	 experiments	 is	 positively	 correlated	 to	 the	 quality	 of	 the	 prototype	
submitted	by	the	students.	

Fifty-five	 students	 who	 submitted	 final	 design	 solutions	 were	 included	 in	 this	 analysis.	 The	 analysis	
indicated	 a	positive	 correlation	between	 the	number	of	 experiments	performed	 (systematic	 and	non-
systematic)	and	the	product	quality.	Pearson	correlations	were	performed	to	analyze	the	relationships	
among	 the	 number	 of	 controlled	 systematic	 experiments,	 the	 number	 of	 all	 experiments,	 and	 the	
product	 quality.	 An	 r	 value	 of	 less	 than	 0.1	 is	 considered	 a	weak	 correlation;	 a	moderate	 correlation	
ranges	 from	0.25	 to	 0.45,	 and	 a	 strong	 correlation	 is	 0.5	 or	 higher.	 The	 results	 indicated	 a	moderate	
correlation	both	between	the	number	of	all	experiments	and	the	final	product	quality	(r=0.37,	p=0.005),	
and	between	the	number	of	systematic	experiments	and	the	final	product	quality	(r=0.38,	p=0.004).	In	
addition,	the	result	for	the	correlational	analysis	suggested	that	students	who	performed	the	majority	of	
systematic	experiments	also	collected	data	multiple	times	(r=0.92,	p	<0.001).	

6 DISCUSSION AND CONCLUSIONS 

This	 study	 proposed	 a	model	 to	 identify,	 characterize,	 and	 assess	 student	 experimentation	 strategies	
during	 engineering	 design:	 the	 Experimentation	 Strategies	 in	 Design	 Model.	 We	 have	 proposed	 a	
continuum	 of	 design	 proficiency	 that	 starts	 with	 having	 no	 experience	 with	 engineering	 design	 to	
becoming	 informed	 designers.	 In	 this	 model,	 beginning	 designers	 (those	 at	 the	 beginning	 of	 the	
continuum)	do	not	consider	experimentation	as	an	important	strategy	and	only	collect	data	few	times	in	
a	non-strategic	way	(Crismond	&	Adams,	2012).	As	the	students	gain	experience,	they	start	to	conduct	
more	experiments,	which	become	more	 systematic	 through	exposure	and	experience.	 The	 systematic	
experiments	 focus	 on	 specific	 variables	 and	 iterations	 among	 data	 collection	 procedures	 and	
modification	of	these	variables	to	optimize	the	end	product	(Schauble	et	al.,	1991).	

The	Experimentation	Strategies	in	Design	Model	helps	to	identify	both	the	number	of	experiments	and	
the	 number	 of	 systematic	 experiments	 a	 student	 would	 complete	 from	 learning	 analytics	 data.	 The	
research	team	first	hypothesized	that	there	would	be	a	significantly	different	number	of	experiments	as	
well	 as	 a	 significantly	 different	 number	 of	 systematic	 experiments	 based	 on	 the	 level	 of	 strategic	
knowledge	 depicted	 by	 student	 performance	 on	 the	 post-test.	 The	 results	 suggest	 that	 there	 is	 a	
significant	 difference	 between	 students	 with	 a	 low	 level	 of	 design	 strategies	 and	 students	 with	
intermediate	and	high	levels.	Other	studies	have	noted	similar	statistical	differences	between	students	
exhibiting	 low,	medium,	and	high	 levels	of	 informed	design	behaviours,	where	highly	 and	moderately	
reflective	 students	 had	 higher	 gains	 in	 informed	 design	 compared	 to	 those	 with	 low	 reflectivity	
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(Goldstein,	 Purzer,	Adams,	&	Xie,	 2015).	Our	 results	 provide	evidence	 supporting	 the	 first	 part	 of	 the	
continuum	that	describes	 the	differences	between	beginner	and	 informed	designers’	experimentation	
strategies.	 However,	 we	 found	 no	 significant	 differences	 for	 the	 overall	 number	 of	 experiments	 nor	
systematic	experiments	between	intermediate	and	high	levels	of	student	strategic	design	knowledge.	A	
possible	 explanation	 is	 that	 students,	 regardless	 of	 their	 level	 of	 strategic	 design	 knowledge	 are	 still	
novice	designers	and	are	apt	to	design	“depth-first”	(Cross,	2000),	meaning	they	fully	develop	a	single	or	
few	 ideas	rather	than	experimenting	and	 learning	from	multiple	design	possibilities	regardless	of	 their	
strategic	design	knowledge.	Because	 the	 students	were	exposed	 to	 these	activities	 for	a	 limited	 time,	
exposure	 to	 the	relevant	variables	 for	systematic	experimentation	were	also	 limited.	However,	 results	
also	emphasize	the	importance	of	a	range	of	design	practices	and	strategies	in	conjunction	with	knowing	
when	 and	 how	 to	 use	 them	 (Adams,	 Turns,	 &	 Atman,	 2003).	 It	 is	 understandable	 that	 students	who	
exhibit	 greater	 degrees	 of	 strategic	 approaches	 to	 design	 also	 exhibit	 a	 greater	 degree	 of	 systematic	
experimentation.	

The	second	hypothesis	intended	to	supplement	the	validation	of	the	model	by	comparing	the	quality	of	
a	prototype	with	the	quality	of	their	design.	The	research	team	used	students’	second	prototypes	to	test	
this	 hypothesis.	 The	 results	 suggest	 that	 there	 is	 a	 moderate	 correlation	 between	 the	 number	 of	
experiments	 and	 the	 prototype	 quality	 score	 (r=0.37,	 p=0.005).	 There	 is	 also	 a	moderate	 correlation	
between	 the	 number	 of	 systematic	 experiments	 and	 the	 quality	 score	 (r=0.38,	 p=0.004).	 Not	
surprisingly,	 there	was	 a	 very	 strong	 correlation	between	 the	overall	 number	of	 experiments	 and	 the	
number	 of	 systematic	 experiments.	 These	 findings	 suggest	 that	 students	 who	 did	 more	 general	
experimentation	also	did	more	systematic	experiments.	Additionally,	this	greater	quantity	and	quality	of	
experimentation	 is	 related	 to	 having	 a	 better	 quality	 design,	 as	 described	 by	 the	 Experimentation	
Strategies	in	Design	Model.	

In	future	research,	our	Experimentation	Strategies	in	Design	Model	can	be	further	explored	and	applied	
to	assess	student	experimentation	strategies	in	other	contexts	where	students	need	to	make	controlled	
experiments.	The	next	steps	include	the	identification	of	different	types	of	systematic	experiments,	how	
they	can	affect	student	 learning	outcomes,	and	the	quality	of	their	design	solutions.	A	follow-up	study	
may	 also	 explore	 the	 effect	 of	 providing	 scaffolding	 to	 students	 on	 experimentation	 strategies	 (e.g.,	
Seah,	 Vieira,	 Magana,	 &	 Dasgupta,	 2016).	 The	 model	 can	 also	 be	 used	 to	 assess	 the	 change	 on	
experimentation	strategies	after	instruction.	

7 LIMITATIONS AND FUTURE WORK 

The	main	 limitation	of	 this	 study	 corresponds	 to	 the	 specificity	 of	 the	 context	 in	which	 the	proposed	
model	was	implemented.	The	middle-school	engineering	challenge	using	Energy3D	has	specific	variables	
that	the	students	should	consider	for	the	experiments	to	be	performed	(e.g.,	energy	consumption,	solar	
radiation).	The	group	of	students	and	the	alternative	available	actions	limited	the	number	of	levels	we	
could	find	within	the	continuum	proposed	by	the	framework.	Furthermore,	the	validation	of	the	model	
was	 only	 given	 by	 external	 instruments,	 such	 as	 the	 open-ended	 questions	 and	 the	 quality	 product	
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design.	Additional	research	is	required	to	capture	students’	rationale	for	their	experiments	and	compare	
it	 to	what	 is	 identified	 by	 this	model.	 A	 possible	 approach	 for	 this	 future	 study	 could	 be	 using	 think-
aloud	protocols,	in	which	students	describe	their	actions	while	working	on	the	design	challenge	(Seah	et	
al.,	 2016).	 Another	 limitation	 involves	 the	 use	 of	 aggregated	 data	 per	 minute.	 Aggregating	 the	 data	
removes	detail	in	some	cases	about	which	of	two	actions	occurred	first	within	that	period.	In	the	future,	
this	could	be	improved	by	treating	the	data	in	a	non-aggregated	way,	so	we	could	identify	the	specific	
order	 of	 actions.	 A	 third	 limitation	 of	 this	 study	 is	 the	 design	 quality	 score.	 Assessing	 design	 with	 a	
quantitative	 score	 is	 difficult,	 especially	 when	 the	 number	 of	 design	 options	 is	 nearly	 unlimited.	 The	
current	approach	attempts	to	be	mindful	of	repeatability,	subjectivity,	and	credibility,	by	considering	the	
main	variables	the	design	challenge	focuses	on	(i.e.,	energy	consumption	and	cost,	as	related	to	the	area	
of	 the	 house).	 Collecting	 additional	 design	 data	 will	 allow	 us	 to	 take	 a	 systematic	 approach	 to	
understanding	how	well	our	design	quality	score	addresses	those	concerns.	
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Colonial                         Cape Cod Ranch 

Budget <$60,000, area 120-160 m2, 
height 8-10 m 

Budget <$60,000, area 100-150 m2, 
height 7-9 m 

Budget <$60,000, area 150-200 m2, 
height 4-6 m 

 

APPENDIX A 
	

	
An	energy-plus	house,	over	the	course	of	a	year,	produces	more	renewable	energy	than	the	energy	it	
consumes.	A	client	wants	to	build	such	an	eco-friendly	house	in	Boston.	Your	job	is	to	come	up	with	
three	designs	using	Energy3D,	following	the	engineering	design	cycle	illustrated	below.	

An	Engineering	Design	Cycle	

Before	you	do	anything,	you	should	
read	this	document	carefully	to	make	
sure	that	you	fully	understand	the	
design	specs,	which	specify	what	the	
client	wants.	Then	you	should	think	
about	what	you	will	do	to	meet	those	
specs.	You	can	discuss	with	your	
classmates	about	ideas.	After	you	
have	some	basic	ideas,	you	can	start	
with	constructing	a	house	in	
Energy3D	that	you	think	may	appeal	
to	the	client.	Once	you	are	happy	with	it,	you	can	analyze	its	energy	performance.	Energy3D	can	
automatically	calculate	the	annual	energy	usage	for	heating	and	cooling.	Based	on	your	analysis	of	the	
results,	you	will	decide	how	to	revise	your	design	to	improve	the	energy	efficiency	of	the	house.	
Meanwhile,	your	design	must	meet	all	the	other	specs	such	as	style,	size,	and	material	cost,	as	described	
below.	

Design	Specs	

The	client	wants	the	energy-plus	house	to	be	in	one	of	the	following	three	styles:	

ENERGY-PLUS HOME DESIGN 
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Note	that	the	budget	only	covers	material	costs	(labour	cost	is	not	considered).	The	house	must	also	
meet	the	following	requirements:	

• Each	side	of	the	house	must	have	at	least	one	window.	
• Tree	trunks	must	be	at	least	two	meters	away	from	the	walls	of	the	house	(i.e.,	the	distance	

must	be	greater	than	the	length	of	two	cells	of	the	blue	ground	grid	when	it	appears).	
• Do	NOT	add	entry	porches,	dormers,	chimneys,	garages,	or	driveways.	
• Do	NOT	add	more	than	40	solar	panels	(regardless	of	their	conversion	efficiency).	
• There	is	no	need	to	design	any	interior	structure	such	as	rooms,	floors,	or	stairs.	
• Roof	overhang	must	be	less	than	50	centimeters	wide	(the	default	is	25	centimeters).	
• Doors	cannot	be	wider	than	two	meters	or	taller	than	three	meters.	
• Keep	the	room	temperature	of	the	house	to	be	20°C	all	the	time.	

	
Since	you	cannot	predict	what	the	client	may	like,	you	will	design	a	Colonial	house,	a	Cape	Code	house,	
and	a	Ranch	house.	You	will	spend	two	class	periods	planning,	constructing,	experimenting,	analyzing,	
optimizing,	and	documenting	each	of	the	three	designs.	At	the	end	of	this	project,	you	will	summarize	
the	pros	and	cons	of	each	design	based	on	its	aesthetics,	material	cost,	and	energy	efficiency	and	
present	your	best	design	to	the	class.	Until	this	project	is	over,	you	can	always	revisit	and	improve	a	
design.	
	
Instruction	
	
The	client	has	provided	the	initial	computer	models	of	the	land	parcel	on	which	the	house	will	be	
constructed.	These	models	also	come	with	existing	surrounding	trees,	grayed	out	because	you	are	not	
allowed	to	move	or	cut	them.	The	files	for	these	models,	colonial.ng3,	capecod.ng3,	and	ranch.ng3,	can	
be	found	in	your	USB	drive	and	can	be	opened	from	within	Energy3D	(using	File	>	Open).	The	trees	and	
land	are	identical	in	all	the	three	files.	The	differences	are	in	their	specifications	of	area	and	height.	
Remember,	don’t	start	from	scratch	—	you	must	always	start	with	these	provided	files.	
	
To	get	started,	

1) Write	your	name	on	the	tag	attached	to	your	USB	drive.	
2) Connect	the	USB	drive	to	the	computer	and	then	open	the	USB	folder	on	the	computer.	
3) Double-click	energy3d.jar	on	the	USB	drive	to	run	Energy3D.	
4) After	Energy3D	is	ready,	use	the	“File	>	Open”	menu	to	open	an	ng3	file	on	the	USB	drive.	You	

can	choose	any	of	the	three	files	as	your	first	design.	
5) Start	working	on	your	design.	While	designing,	use	the	“Show	Note”	button	on	the	task	bar	of	

Energy3D	to	open	a	text	area	below	the	3D	view	window.	The	text	area	provides	some	
instructions,	questions,	and	a	checklist	to	guide	you	through	the	design	process.	You	must	
answer	those	questions	based	on	your	design.	Save	everything	you	have	done	in	this	file	—	do	
not	save	your	work	into	a	different	file	unless	you	want	to	keep	a	backup	copy.	
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6) At	the	end	of	each	session,	remember	to	save	your	design.	You	MUST	save	all	your	work	in	the	
USB	drive	(as	you	may	use	a	different	computer	next	time).	At	the	end	of	a	class	period,	do	NOT	
just	pull	the	USB	drive	—	use	the	EJECT	function	of	the	computer	to	safely	remove	it.	

7) Repeat	for	your	second	and	third	designs.	
	
Important	Notes	
	

• You	can	only	build	one	house	on	the	platform.	Don’t	put	multiple	houses	on	a	single	platform.	
(A	house	is	defined	as	a	space	enclosed	by	one	and	only	one	set	of	connected	walls.)	

• The	house	can	be	rotated	and	its	height	can	be	adjusted	as	a	whole.	Focus	on	its	shape	design	
initially	and	keep	in	mind	that	you	can	always	raise,	lower,	or	rotate	it	later.	

Always	document	your	work	and	thoughts	in	the	Note	Area,	especially	when	you	are	analyzing	the	
energy	efficiency	of	your	design.	Your	notes	will	be	saved	when	you	save	your	design.	
 
 


